
à haute fréquence. Le circuit oscillant d'antenne est connecté à travers la grille et le filament, un circuit accordé L_2C_2 étant inséré dans le circuit de plaque. En dérivation sur C_2 se trouve un détecteur à galène G, et les téléphones T sont disposés de la façon ordinaire; le circuit L_2C_2 est accordé à la même longueur d'onde que les signaux à recevoir.

Montage d'un «Buzzer» d'essai

On sait que l'on peut vérifier, en l'absence de signaux, le fonctionnement d'un circuit récepteur, à galène par exemple, au moyen d'un buzzer, qui est une petite lame vibrante actionnée par un électro-aimant.

La figure montre la façon de monter un buzzer d'essai sur un circuit à galène.

chacune d'elles étant couplée de facon à ce qu'un effet de réaction se produise. On vérifiera le sens des connexions des bobines L.

et L_3 de la façon suivante :

Court-circuiter L_4 . Accorder le circuit d'antenne et le circuit de plaque jusqu'à ce que l'on entende des signaux aussi forts que possible, le couplage entre L_3 et L_2 étant maintenu très lâche. Rapprocher L3 de L9 et noter s'il se produit une augmentation de l'intensité du signal, le circuit L_2C_2 étant soi-

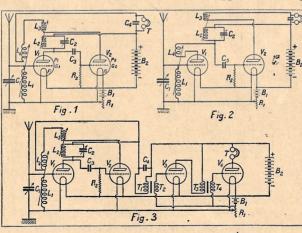
gneusement réglé en même temps.

Si l'intensité des signaux augmente, tout va bien. Sinon, il faudra inverser les con-

nexions de la bobine L_3 . Courtcircuitons maintenant la bobine L_3 et rapprochons L_4 de L_1 . L'intensité du signal obtenu devra croître pourvu que C_1 et C_2 soient convenablement réglés. Si l'intensité du signal décroît, les connexions de L₄ devront être inversées sans retard.

Décourt-circuitons maintenant la bobine L_3 et lâchons les couplages. Puis rapprochons L_3 de L_2 , en même temps que nous réglons le condensateur C_2 pour maintenir maximum l'intensité des signaux. Il arrivera un moment où la lampe V_2 oscillera et on empêchera cet accrochage en réglant le couplage entre L_3 et L_2 . L'inductance L_4 est alors rapprochée de L_1 et le circuit L_1C_1

est soigneusement réajusté jusqu'à ce que l'on entende des signaux aussi forts que possible sans accrochage d'oscillations. On constatera que l'accord d'antenne devient de plus en plus pointu. Les meilleurs résultats sont obtenus en réglant soigneusement le couplage entre L_{4} L2 et les deux bobines de ré-


Les circuits à double réaction

Un perfectionnement récent des appareils de télégraphie sans fil a été apporté par la « double réaction » introduite dans certains circuits et décrite dans le magazine « Modern Wireless ». La réaction est appliquée deux fois au circuit récepteur.

Une forme de circuit à double réaction

est représentée figure 1. Dans le circuit de plaque de la première lampe se trouve un cir- $\operatorname{cuit} L_2 C_2 \operatorname{accor-}$ dé sur la longueur d'onde des signaux à recevoir, L'extrémité inférieure de L, est connectée à travers le condensateur de grille C_3 à la grille de la lampe V2. Au lieu d'avoir une bobine de réaction

dans le circuit de plaque de la lampe V_2 et de coupler cette bobine soit à l'inductance L_1 , soit à l'inductance L_2 , on s'arrange de façon à introduire de la réaction, non seulement dans le circuit L_1C_1 , mais aussi dans le circuit L_2C_2 . Ceci est effectué au moyen de deux bobines de réaction variables L_3 et L_4 , L_3 étant couplée, à l'inductance L_2 et L_4 à l'inductance L_1 ,

DISPOSITIFS DE CIRCUITS A DOUBLE RÉACTION

action, les condensateurs C1 et C2 étant toujours soigneusement réglés pour donner les signaux les plus forts possibles, sans qu'il se produise des accrochages d'oscillations.

On constatera qu'en augmentant la réaction entre L_4 et L_1 , on augmentera en même temps, d'une façon très sensible, la réaction entre L_3 et L_2 ou vice versa.